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D E T E R M I N A T I O N  OF T H E  S T R A I N  C H A R A C T E R I S T I C S  

OF I N T E R B L O C K  C O N T A C T S  U S I N G  R O C K  S P E C I M E N  T E S T I N G  RESULTS 

L. A .  N a z a r o v  a n d  L. A .  N a z a r o v a  UDC 539.3 

A technique for interpreting rock specimen compression testing data is proposed. It consists of 
mathematical modeling of the loading of a specimen containing the sliding line L, on which the 
stresses are continuous and the displacements are discontinuous. At each step of loading the 
values of a jump of displacements on L are found from the experimentally known stress-strain 
dependences. The empirical relations describing the strain process on the sliding line are found 
using these results. Based on Stavrogin's experimental data, we estimate the parameters of the 
dependence of the peak strength of the interblock contact on the shift from the normal stress. 

In t roduc t i on .  The conclusion that a geophysical medium is of a block structure was made based on an 
analysis of the deformation processes in objects of different scale levels [1]. This allowed one, in particular, to 
explain the relatively long lifetime of big tectonic structures despite frequent natural collisions. The mechanism 
of the latter was associated with a fracture-free repacking of a system of blocks. 

These mechanisms also occur at lower scale levels. For example, in biaxial compressive rock tests, 
Stavrogin and Protosenya [2] obtained data indicating that the specimen preserves the integrity until the 
strength limit is reached in the constrained conditions. The specimen was then divided into parts, which slid 
over each other. The typical experimental stress-strain (a-e) diagram consists of four parts (Fig. 1) [2, 3]: AB 
is the elastic section, BC is the nonlinear-elastic section, CD is the descending branch, and DE is the section 
of beyond-the-limit deformation. Comparing this diagram with the experimental data on the determination 
of the strain characteristics of the interblock contacts in the tangent direction [4--6], one can conclude that 
they are in full qualitative agreement. 

Revuzhenko and Shemyakin [7] proposed a different mechanism of specimen strain, namely, the 
penetration of a randomly burnt crack. At the first stage, corresponding to AB, the specimen is single-piece 
and is deformed elastically; then the sliding line L (Fig. 2), oriented along the site of action of the maximum 
tangential stress is involved (the section BC), L being in a limiting state; at the third stage (the section CD) 
the curve L passes to the descending section (the specimen disintegrates) and, finally, the slipping of these 
parts occurs on the section DE (the residual-strength section on L). 

Our interpretation of the rock testing data using the approach of [7, 8] is also motivated by the 
somewhat incorrect, in our opinion, attempts [9] to assign the experimentally obtained laws of interblock 
fracture deformation to continual objects, i.e., nonzero-measure elements (for example, in a finite-element 
analysis), whereas all characteristic features of the behavior of a medium (object) in a beyond-the-limit state 
are localized in narrow regions, namely, in the planes of sliding. 

1. Fo rmula t ion  and  Solut ion of the  P rob lem.  In the experiment the specimen was loaded "rigidly" 
in the vertical direction and "softly" in the horizontal. This process can be modeled as follows. A variable 
vertical displacement is applied at the upper boundary of the rectangular region G, whose dimensions are 
Iz and lz on the z and z axes of the Cartesian coordinate system, the lower boundary does not move in 
the vertical direction, and the constant horizontal stress is given at the side boundaries (Fig. 2). The curve 
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of sliding L, on which the stresses are continuous and the displacements have a strong discontinuity, passes 
through the center of the region G at an angle ~ to the horizontal axis [7, 8]. In modeling the strain process for 
structured media, e.g., a rock massive, the interblock contacts (discontinuities) are described using precisely 
these objects [6]. 

Outside L, the equilibrium equations 

and the Hooke law 

a O j  ---- 0 ( i . I )  

f i i  = 2p e6tj + r  (1.2) 

are satisfied. Here ~i1 = 0.5(uij  +us  e = ezz +e ,z ,  aij and e 0 are the stress- and strain-tensor components, 
i , j  = x , z ,  p = 0.5E/(1 + v) ,  E is the Young modulus, and v is the Poisson ratio; summation is performed 
over the repeat index. 

Also, we formulate the boundary conditions 

uz ~w0,  fzz ~ 0  
uz = 0 ,  f i z z  = O 

fzffi = f l ,  f z z  = 0  

f o r  Z - -  0 ,  

for z = Iz, 
for z - -O ,  lz, 

(1.3) 

where w0 is the variable vertical displacement (the load parameter) and al is the magnitude of the lateral 
pressure. 

In the experiments [2, 3], for various values of cl  a series of dependences was obtained: 

f2 = f2(e2), el = el(e2), (1.4) 

where f2 is the reduced stress at the upper edge of the specimen, f2 = wo/ l z ,  r = uo / I z ,  ~1 is the transverse 
strain, and u0 is the horizontal displacement. 

Thus, we have two characteristics of the loading (1.4) and formulate the following problem: to obtain 
equations that determine the strain law on L in the form 

= P ) ,  f = fCR,  P )  

(r and f are the tangential and normal stresses, R and P are the slippage and approach of the crack sides) 
such that the calculation results correspond to the experimental data at each step of loading. 

Revuzhenko [8] proposed the variational principle: in the region containing the line of strong 
discontinuity of displacements, the stress-strain state in which the potential energy of the system W is 
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minimal is realized; note that  

W = We + l x U / c o s ~ ,  (1.5) 

where We is the strain energy in the elastic part of the region and U = U ( R ,  P )  is the density of energy 
dissipation on L. 

System (1.1)-(1.3) admits the solution in stresses axx = a l ,  azz = a2, and o-xz = 0; for a plane strain, 
we have 

1 - v u (1 .6)  = 0.5A(au  + 2v.uow  + bw ), A = E(I + v)(1 - 2v)' = I --:-; '  

where ut and wt are the elastic components of the displacements, a = l z / I z ,  and b = lz /Ix .  The full 
displacements consist of the elastic displacements and the displacements caused by the continuity violation 
(Fig. 2): 

u0 = u~ + R cos ~ + P sin ~, w0 = w~ + R sin ~ - P cos ~. (1.7) 

Substituting (1.6) and (1.7) into (1.5) and varying with respect to R and P,  we obtain the necessary condition 
for the existence of the minimum of W: 

OU OU 
rl  - c l R  - c2P = q - ~ ,  r2 - c2R - c s P  = q o P '  (1.8) 

where rl  = m l w o  + rn2uo, r2 = r n 3 w O  - -  m4uo, ml = as inf l  + v. cosfl, rn2 ---- bcos~  A- v. sinfl, m3 = 
a cos ~ - u. sin ~, m4 = b sin ~ - v. cos fl, Cl = a sin 2 ~/+ v. sin 2~ + b cos 2 ~, c2 = 0.5(a - b) sin 2~ + v. cos 2~/, 
cs = a cos2~ - v. sin 2~ + b sin 2 fl, q = l z / A  cos ft. Taking into account the continuity of the stress field upon 
passage through L [8], i.e., r = Tn and o. = an, where vn = 0 . 5 ( 0 . 1 - - 0 - 2 )  sin2fl and an = 0.1 sin 2 ~+0-2 cos 2 ~, and 
the fact that r = O U / O R  and o. = OU/OP,  from (1.8) we obtain the system of equations for the determination 
of R and P:  

c l R  + c~.P = rl  - qrn, c2R + c s P  = r2 - qo.,. (1.9) 

The determinant of the system is ClC3 - ~ = 1 - v. 2 > 0, and therefore the solution of (1.9) 

( ) ( 2) R = 1 + a~----~.,2 sm 2~ wo sin ~ + 1 + ~ sm tff uo cos ~ - q l s l ,  
1 - v ,  1 - t , ,  

P = wo Cos ~ff - uo s in~ - q l s 2 ,  Sl  " -  m 4 0 " l  s i n ~  - m s o ' 2  c o s  f l ,  (1.10) 

1 ,  1 - t ,2 
s2 ---- rn2o-1 sin fl + ml0.2 cos/~, q l  = COS ~ E 

always exists. For (1.10) to describe the state of stable equilibrium, the following sufficient conditions of 
existence of the minimum of W should be satisfied: 

O R > - - - ,  cl + q ' ~  c3 + q-ff-~ > c2 + q ' ~  ) , q 

which can be checked after solving (1.9). 
For various values of the lateral pressure o-i, the calculations yield a series of dependences 

o. = o.( R(wo) ,  P (wo)  ), (1.11) 

~" = r(R(w0),  P(wo)), (1.12) 

which were analyzed. 
2. A n a l y s i s  o f  R e s u l t s .  The calculations were carried out for granite and sandstone specimens, the 

physical properties of which are given in Table 1. The specimen sizes are lz = 0.03 m and l~ = 0.08 m. In 
all experiments, the angle of declination of the discontinuity was almost constant, ~ = 45 ~ and precisely this 
value was used in our calculations. For the granite specimen, solid curves 1-4 in Fig. 3 indicate the calculated 
dependences (1.12) for al  = 10, 25, 50, and 100 MPa, respectively. 
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TABLE 1 

Specimen E, GPa 

Sandstone 30 

Granite 55 

u a. ,  MPa 

0.17 500 

950 

r MPa 

250 

2OO ~ 

150 

100 

50 

4 

i 3 

! 

i i X  . i i i 
4 8 R.  12 16 20 (R/lz)-103 

Fig. 3 

The following form of the  equations describing the  law of deformation of interblock contacts was 
adopted [5]: 

a -- S ( P ,  r = 0); (2.1) 

r -- T ( R ,  a = const).  (2.2) 

The  functions S and T are determined from deformation experiments on rock specimens containing real 
violations of the continuity. The  basic characteristics of T are as follows: r .  is the  peak (maximum) shear 
strength, R.  is the u l t imate  slippage (Fig. 3), and K t  = O T / O R  is the  tangential stiffness. 

A dependence similar to  (2.2) can be derived from the calculated data. The  value of a = a m is fixed, and 
R m = a - l ( a  m) is found f rom (1.11) and r m = r ( R m , P ( R m ) )  from (1.12). The  results of this procedure for 
a m = 120, 160, and 240 M P a  are shown in Fig. 3 by dashed curves 1-3, respectively. The  scarce experimental 
data  (a large step in a l )  did not  allow one to determine the more detailed form of the function T. Nevertheless, 
the resulting dependences of the  tangential stress on the slippage have characteristic features [4, 5]: an increase 
in r . ,  R. ,  and Kt (for small R) with increasing a and a descending branch for R > /R . .  

Unfortunately, this analysis is unable to determine the form of the function S in (2.1), because the 
condition r > 0 is always satisfied during loading. 

The peak s trength r .  is one of the basic parameters of the equations describing the empirical law of 
deformation of interblock contacts,  which is used to evaluate the stability of the s t ructured massive. Formulas 
for estimating r.  were proposed.  We analyze three of them: 

�9 The Coulomb-Moore  formula [6] 

r ,  = a tan c~. -k % (2.3) 

(a .  is the analog of the angle of internal friction and rr is the cohesion); 
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TABLE 2 

MPa 

Sandstone Granite 

~I, 

0 71.0 

5 87.5 

10 90.0 

25 113.5 

50 151.0 

100 

�9 r., MPa 

169.0 

a, MPa 

71.0 

92.5 

100.0 

138.5 

201.0 

al, MPa z., MPa a, MPa 

0.5 113.7 114.2 

10 113.5 123.5 

25 149.0 174.0 

50 193.0 243.0 

100 254.0 354.0 

371.0 150 521.0 

TABLE 3 

Specimen 

Sandstone 

Granite 

a . ,  deg re, MPa I r,% 

Formula (2.3) 

26.8 40.3 

32.3 38.0 

4.7 

I f It,% 
Formula (2.4) 

27.3 9.3 3.2 

30.6 

-.,deg] h It,% 
Formula (2.5) 

47.8 0.518 2.0 

44.0 6.7 

�9 The Barton formula [5] 

T, = a tan a ,  + f In ; (2.4) 

�9 The Stephansson formula [10] 

T, = atan (a,(1 - a/a,)h), (2.5) 

where a, may be treated as an analog of the rock strength in the constrained conditions. The values of a, are 

listed in Table I. 
We consider that the points on the curves of Fig. 3, where r, is maximum, correspond to the strength 

limit r. The quantity a was determined for the same value of R. The results of this analysis of the calculated 
data are shown in Table 2, and their processing by the least-squares method allowed us to find the constants 
in (2.3)-(2.5) (Table 3). Formulas (2.3)-(2.5) well describe the experimental and calculated data: the relative 
error r does not exceed 7%. Only (2.5) for small values of a is not suited for describing the experimental data, 
because r, > a for sandstone. 

It is noteworthy that the values of the cohesion in formula (2.3) are close to r, = 10-30 MPa [6]. The 
open circles in Fig. 3 correspond to the points (R, m, v, m) whose ordinate is calculated by (2.3) with allowance 
for the data of Table 3 and whose abscissa is obtained by interpolation using relation (1.12) and the value of 

The results point to the possibility of estimating the characteristics of the newly formed (as a result 
of natural or industrial collisions) discontinuities without direct experiments on the standard equipment for 
specimen testing, which is important,  because full-scale experiments are extremely expensive [11], and it is 
often impossible to extract  the discontinuity-containing specimens. 

The experimental results can be extrapolated to the extended discontinuities using the scale effect data 
[12]. 

The authors are grateful to Academician E. I. Shemyakin for the suggested idea and a discussion of 
the results. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 95-05- 
15604). 
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